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C o n s i d e r e d  Is the problem of the construction of t h e  supersonlcpartof a noz- 
zle with a maximum thrust. The first exact solution, in closed form, of 
this problem for an axially symmetric supersonic flow was given by S~glev- 
skll [I]. The end points of the nozzle generatrlx were considered given. 
For the explicit description of the functional and auxiliary conditions, use 
was made of the transition from the contour of the body to the boundaries of 
the region of influence. 

In the present work the supersonic flow in the nozzle is assumed to be 
spatial. The differential equations of flow are used as relations between 
functions. This approach to the solution of variational problems of gas 
dynamics was used by Quderley and Armltage [ 2] and by Sirazetdlnov [3]. The 
necessary conditions for an extremtnu which are obtained in this formulation 
of the problem represent a boundary value problem for a system of nonlinear 
partial differehtial equations with conditions on the entire surface which 
bounds the region of influence. An analogous result was obtained, for exam- 
ple, in [2] in the dete~tion of an axially symmetric nozzle of maximum 
thrust with ~rbitrary isoperlmetric conditions on the walls. 

Under sertain restrictions which are related only to the contour of the 
outlet of the nozzle, there exists a class of spatial optimum solutions in 
which the number of inde endent variables of the boundary value problem can 
be decreased. For an axially symmetric flow this was done in paper [4]. 

I. ~ ~  @f ~k@ ~ ~  p~@bl@i. Let u, u, and w be the 

projections of the velocity on the axes of a Cartesian coordinate system x, 

y, z • For the description of a stationary irrotatlonal Isentroplc flow of 

a nonvlscous nor.heatcor~ucting gas, with arbitrary thermodynamic properties, 

it is sufficient to use three equations (two projections of the vortex and 

the equation of continuity): 

L , . ~  u ~ - - t o = =  O, L 2 - -  v~--  u ~ =  0 
(I .t) 

= (pu)  + (PO  + (ptv)  = 0 

Here, and in what follows, the subscripts x, p and z denote partial 

derivatives. The density 0 , the pressure P , and the sound velocity a , 

are known functions of the absolute value of the velocity. Hereby, 
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d p  _ a s  dP = _ u d u _  v d v _ w d w  (1 .2)  
P P 

For later use, we introduce two "stream functions" ,(x,y,z) and X(X,y,z) 

of the spatial flow by means of Formulas 

D (@, X) 
Ou = D (y, z)" = • u X z - -  SzXll (uvw, zyz)  ( t . 3 )  

Here the symbol (uuw, xyz) indicates a cyclic transposition. 

It is not difficult to verify that Equation Ls= 0 of the system (I.I) 

is implied by the system (1.3). Hence any two equations of (i.3) permit one 

to construct the stream functions ¢ and X for any known flow field. 

Let us consider the differential equations of the stream lines 

dx dy dz 
p-~ = pv- pw (1.4) 

Taking (1.3) into consideration we can perform the integration of (1.4). 

The calculations show that along the stream lines 

g, ~ ~ = c o n s t ,  X = co.nst ( t . 5 )  

F x ~ -  Next, let us consider the varia- 

tional problem. 

Fig. i 

surface which passes through F. The 

and El intersect. Let us denote by 

which passes through the contours F: and F . On this surface 

u c o s  n x  + v c o s  n y  + w c o s  n z  = 0 (1 .6 )  

Here n is the normal to the surface z . 

If we denote by Pc the exterior pressure then the thrust of the nozzle 

in the direction x is given by the relation 

= I f  (P - -  Po) c o s  n x d o  ( i . 7 )  T 
6 

In supersonic flow the distribution of the pressure p on ¢ depends 

only on the region T bounded by the surfaces Z~, Z and a • 

Lu~ us formulate the following variational problem: on the basis of a 

given characteristic surface ~: we are to find a flow stiff ace ¢ which 

passes through given contours F, and F and which yields an extremum of 

the functional (1.7) under the differential relation (1.6) on e , and the 

differential relations (I.i) and (1.2) in the region ~ . 

Suppose that the parameters of the 

initial flow are given by the charac- 

teristic surface Z~ This surface 

(Fig.l) passes through the given con- 

tour P, Let another contour F be 

given. We shall indicate by the letter 

Z an unknown closing characteristic 

contour L is the curve in which 

0 the flow surface f(x,y,z) = 0 
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2. NeoeBig~y ~&~o1%I for ~ e~re~%ga, Let us denote by C (X, y, z), 

h I (x, y, z), h 2 (x, y, z) and h a (x, y, z) the Lagrange multipliers. We con- 

struct Expression 

If [(p - -  Po  + cu) cos  n x  + cv  cos ny  -F- cw cos nz] do -~- T ° =  
G 

g 

and require that it takes on an extremum as we vary u, u, w and x, y, z 

on the surface a • 

Hereby P and p will be functions of u, u and w , and in view of 

(1.2) we have 

,Sp = - -  p u 6 u  - -  p v S v - -  p w S w ,  6 p = - -  pu pv pu, - ~  6u -- -~ 6v - -  ~ 6w (2:2) 
Fol±owlng [ 2], we perform the variation of the surface and of the velo- 

cities separately. The total variation 2o will be 

T ° T ° 5 T  ° -~ ~ v=const -~- 5 a=const 
o 

in the evaluation of 8Tv=const  one may consider three types, of represen- 

tation of the function j'(m, y, z) = 0 in explicit form. One may think of 

/(x, y, z) - 0 having been solved for x ; then y and z are considered 

as independent variables. 

The quantities xy, x: are partial derivatives of x with resect to y 

and z , respectively, and are obtained from /(x, y, z) - 0 under the 

assumption that this equation determines x as a function of y and z • 

Furthermore, the symbols OC / 0X, 0C / @y, @C / @Z will denote partial 

derivatives of the function c on the surface a • 

In the example under consideration 

Oc Oc Oc 
o'--~ = c~, ~ = c u + c ~ ,  o--~ = c~ + c=x~ 

Besides that, it is clear that 

0 = / ~  + l=x~, 0 = L + Lz~ 

Thus, the argument x represents explicitly the surface ~ in view of 

Equation J'(x, y,  z) " 0 . 

T ° Let us evaluate 6 v=const by varying the form of the surface ~ , and 

T ° let us set ~ v=const equal to zero 

~Tv~const  = ~ I f  [(P -- PO -4- CU) COS n x  ~- CV COS n y  + cw cos nz] do = 
G 

: If [ -  <p - po + + + dya  = 
ay z 

oy ~ ] x 
OYZ • 
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The symbol ~Tz denotes here the projection of the surface a on the 

plane yz . Using Green's formula, and taking into account the fact that 

6x = 6n cos nx , we obtain 

6T:=co-st = I f - -  [P~ + (cu)x + (c~)~ + (cw)J 6n cos~ ~xd~ 0 
C 

The integral of this expression, which has the form of a divergence, van- 

ishes since the boundaries of the region of integration remain fixed. 

The quantity cos nx is not equal to zero in general on the surface ~ . 

Hence, if 6T:=const is to be zero it is necessary that we have the fol- 

lowing relation on ~ : 

px + (CU L + (CV L + (CW L = 0 

Since Equations (~.I) and (i.2) are valid in ~ , the last displayed equa- 

tion may be rewritten as 
C C 

- ÷ 

c c u =pu(~---u) ÷pv(-~---) ÷pw(~--u) =0 (2.3) 

The characteristic system of the linear homogeneous equation (2.3) coin- 

cides with the differential equations of the stream lines (1.4). Along the 

stream lines, $ = const and X " const by Formula (1.5). Thus, the gene- 

ral solution of the linear homogeneous equation (2.3) has the form 

¢ 

u = O ( % X ) ,  o~ c = ~  [ u + O ( ~ , x ) l  
P 

Here ~(~, X) is an arbitrary function of ¢ and ~ . 

On the flow surface the quantities $ and ~ are related. Suppose this 

relation is given by ~ = $(X) on the surface ~ . Then the variable multi- 

plier c as given on the surface a by Formula 

c = p {u + • [~ (X), X]} (2.4) 

Now we obtain an expression for 8T~=const , and'we set it equal to zero 

6 o=~o~t = [(6p + c6u) cos nx ÷ c6v cos ng -F c6w cos nzl da + 

0 

+ ill  {hi [(6~)~- (~)x] + h~ [(8~)~- (6u)~l + h~ [(@~)~ + (60~)~ + 

+ (Spw)j} d t  = 0 (2.5) 

Let us denote by k the normal to the characteristic surface of the first 

family Z . On Z we have 

u cos kx -4- v cos  kg + w cos kz = a (2.6) 
Making use of the Gauss-0strogradskil formula, we transform the second 

integral of Expression (2.5) with the aid of integration by parts. Hereby, 

we recall that the variations of the functions vanish on the given charac- 

teristic surface Z . In view of (2.2) we now have 
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G 

I l l  (UsSu + Va6v @ W36w) dT = 0 (2.7)  

Equating to zero the expression 5u, 5v and 5w , we determine the 

Lagrange multipliers on the surfaces a, Z and in the volume ~ . 

From the first integral of Formula (2.7), considering (1.6), we obtain 

the following conditions which must be satisfied on the surface ~ : 

U 1 ~  ( - -  p u +  c + 9ha) c o s n x - - h  2 c o s n y - ] "  h l c o s n z =  0 

V 1 ~ ( - -  pv + h 2 )  c o s n x +  ( c +  ph3) c o s n y  = 0 

W 1 --~ ( - -  p w - -  hi)  c o s  nx Jr (c + ph3) c o s  nz  = 0 

(2.8) 

Let us introduce the notation 

~U = W ÷ h-2-~ ~2 = V - -  h-A2 ~'3 = U + ¢I) + h 3 ( 2 . 9 )  p ' p ' 

In view of (I.6), (2.4) and (2.9), Equations (2.8) may now be rewritten 

as 
~'1 cos  nz  -f- ~ cos ng -~ ~'s cos nx = 0 

- -  ~'2 c o s  nx + ~,a cos  ny = 0 (2 ,10)  

- -  ~'1 c o s  nx + ~,3 c o s  nz  = 0 

The determinant A of the homogeneous system of equations (2.10), which 

determine the quantities k~, ks and Xs, is equal to - cos rtx . On the 

surface ~ , the quantity cos nx ,is, in general, not qual zero. Hence, 

k L - ka= k s - 0 . Recalling (2.9), we find that on the surface of the nozzle 

we have Equations 

h I = - -  pw, h 2 = pv, h 3 == - -  {u + • [4  (~),  X]} ( 2 . t t )  

From the second integral of (2.7) and from (2.6) we obtain conditions 

which must be satisfied on the characteristic surface E 

U S ~ h 3 9 c o s k x - - h ~ c o s k y A -  h l c o s k z - - h s p u / a  = 0 

V 2 ~ h 2 c o s k x - ~  hap c o s k y - - h a p v / a  =- 0 

W~ = h l c o s k x  + hap cos kz  - -  ha pw / a = 0 

This is a homogeneous system. Its determinant is zero. Hence, on Z 

it is sufficient that the following two conditions be fulfilled: 

h 2 c o s k x  A- hap c o s k y - -  h s p v / a  = 0 
( 2 . t 2 )  

- - h  l c o s k x  + hap cos  kz  - - h  a pw / a = 0 

Finally, from the third integral of Expression (2.7) we obtain the con- 

ditions which must be satisfied in the volume 
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- -  U I ~ V  h MW 

UVh3x ,-I- P t - - - ~ -  hau p ~ -  ~ - ~  0 (2.13) V 3 = h ~ - - p  ~ 

"~- ) h3z 0 • u w  h v w  (t w~ W3 ~ ~ n t ~ - - p  - f f  3~ ~ P -~- h3u + p - -  = 

Analysis shows that the system (2.13) for supersonic flow is of the hyper- 

bolic type, and the characteristic directions coincide with the character- 

istic directions of the equations of gas dynamics (i.I) and (1.2). 

Thus, the variational problem of the determination of the nozzle surface 

a possessing the maximum thrust and which passes through the contours F:, 

and F , has been reduced to a boundary value problem for a partial differ- 

ential equation. 

Indeed, let o be some surface which is stretched over F~ and F • On 

the basis of a given initial flow on Z, , and on the basis of the surface 

,, we determine, by means of the solution of the system (1.1),(1.2), the 

flow in the volume T , and also the characteristic surface of the first 

family Z • Furthermore, with a given flow field and for a certain function 

~[*(X), X] we compute the values of hl, h~, h~ on the surface ~ by means 

of Formula (2.11). After that, by solving Cauchy's problem for Equations 

(2.13) in the volume T , we find the values of h:, h2, ha on E . If, in 

addition, the condition (2.12) is satisfied on Z , then the flow surface 

will yield the solution of the variational problem. 

3, Deorog| in6 ~ho ntamber of i~lepez'~Lon~ vo~i&~lo|  ~,  ~ho bom~All-w'/ Vln~,UO 
pro~1,m d)[~ (%), X]=const. Let us project the characteristic surface of 

the first family E , which is stretched 

over the contours F and L , upon the plane 

yz • In Fig.2 the bounded doubly-connected 

region D represents the projection of Z 

y~ upon the plane yE • The contours F and 

L are projected on ¥ and b , respectively 

Now we rewrite the conditions which are 

satisfied on the surface Z , whose equation 
Fig. 2 

is written in the form ~(y, n) -- x - 0 . 

We shall use the notation 

A = a V i  + (3.1) 
• Then the two conditions of extremallty (2.12) take the form 

A h~ h, (3.2) pv -g~- = ---h-~- + p(p~, p w A  = " ~  + ~ z  

and the condition of directions (2.6) becomes 

- -  u + wp v + uxP z = A (3.3) 

The surface Z is the characteristic surface of the system (2.13). The 
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condition of coincidence on this surface has the form 

Ohl Oh2 A ~/~Oha Oha\__~ Ohs ~ Oha 
o= oy d 9- - -  ÷ = 0 

Taking into account (3.2), we may rewrite the condition of coincidence 

on X as ahd~s O h ~ h s  0 (3.4)  
Oz J y  

Next, we con- Let us set qb [ ¢  (X), X] = Cl = cons t  on the surface a • 

s i d e r  t h e  e x p r e s s i o n s  f o r  t h e  L a g r a n g e  m u l t i p l i e r s  

h i = - -  9w, h e = p v, h a ~': - -  (U -~- Cl)  (3.5)  

These expressions have the remarkable property of satisfying the initial 

Cauchy condition (2.11), and they can easily be shown to be a solution of 

the system (2.13) because of the relations (l.1) and (1.2). 

Substituting (3.5) into (3.1) to (3.4), we obtain the following system of 

equations for the determination of the extremal characteristic surface of 

the first family: (3.6) 

A ¢?_~ + t A ~z 1 Ovp (u + el) Owp (u ÷ cd 0 
~--v ~ . + ,:T ' ~ = - ~  + - J - U - d  ' au + a~ = 

Let us replace the unknown functions v and w on Z by w and ¢ 

by means of Formulas 

/.7 ~-  O) COS E~ W = (1) , s in  8, ~)2 -~_ W2 = {1)2 
Eliminating A and taking into account the fact that ~) ~- ~ (U 2 ~ (0 2) 

and a = a (u s Jr- 0)9), we can transform the system (3.6) into 

u + Cl = - -  (o a ( 3 . 7 )  
V u~ + o)~ - ~ 

2u -~ c, 2u + cl (3.8) 
q)u = ¢Ocoss  ¢ o ~ - - u ( u + c  d q )  = o ) s i n e  ( o ~ - - u ( u + c l )  

O cos e (Uoy + cl) ~p _~_ 0 sin eoz(U + cl) mp = 0 (3 9) 

T h i s  system yields the functions u(y,z), e(y,z), ~(y,Z) and ~(y,Z) on  

E . Let us analyze the systems (3.7) -- (3.9). 

The final relation (3.7) shows that in the space of the velocity hodo- 

graph the surface Z is representable as an axially synmetric surface with 

u as axis of syTmetry. Thus, the relation (3.7) permits one to consider 

u on E ss a ~own function of w , i.e. u = ~(~) . 

~n the determination of Z it is necessary to satisfy the boundary con- 

ditions. ~rstl~, Z must pass through the given contour F . This means 

that in the yg plane there is given the contour y arid the values of 

on it. Secor~dly, the surface Z must pass through some contour L which 

belongs to the given characteristic surface Z~ • This means that on some 

COntour Z of the YZ plane the relations (3.7) to (3.9) must be satisfied 



Variational problem on three-dimensional supersonic flows i19 

by the given values of the gas-dynamic function because of flow continuity. 

In the sequel we shall solve the inverse problem: we will select on E~ 

some. contour L satisfying the relations (3.7) to (3.9), and by means of 

(3.7) to (3.9) we will construct the surface 

L • After that we construct the contour r 

of ¢ = ¢(X) given on r I The contour F 

ted contour L • 

Let us choose an arbitrary point on Z~ 

to determine at once the contour L on E~ 

tour l on the yz plane and the values of 

Z passing through the contour 

on Z by means of the values 

will correspond to the selec- 

The relation (3.7) permits us 

This determines also the con- 

on Z • With these data 

one can evaluate the derivative d~/ds on Z , where s is the are length 

of Z • On the other hand, the relations (3.8) determine ~y and ~z on l, 

and, hence, also the derivative d~/ds • It is obvious that in the general 

case the values d~/da on ~ ," evaluated by the first and second method, 

will not coincide. This indicates that the problem has no solution in gene- 

ral. 

However, the problem can be solved if one assumes that there can occur a 

break of the surface C on the contour F~ 

In this case an infinite number of characteristic surfaces Z~I may emerge 

from the contour ~ Each Z~ is determined only by the given surface Z~ 

and by an arbitrary function 51(F~) chosen along r~ (the spatial analog of 

the Frandtl-Meyer flow). For the function 6~(FL) one may take, for example 

a dihedral angle between two tangent planes to the surfaces Z l and Z:~ at points of 

the contour r~ • For an arbitrary chosen point of Z~, we select a function 

6~(~) and thereby a~Inltialcharacteristio surface Zj~, such that on the con- 

structed contour Z the values of d~/ds, evaluated by the first and second 

method coincide. Y_~ this manner one constructs the required contour L and 

determines the initial conditions for the solution of the system (3.7) -- 

(3.9). 

The system of equations (3.7) to (3.9) can be reduced to a system of a 

known type. 

Let us introduce a new function V o by means of Formula 

2u -F cl (3.10) 
Vo = ~ -~ _ _  u (u + c~) 

s i n c e  by ( 3 . 7 ) ,  u = u ( w ) ,  t h e  r e l a t i o n  ( 3 . 1 0 )  can be c o n s i d e r e d  as  an 

implicit determinatlon of 

slon 

as a function of ~. 

Let us set 

UO ~ y ~  

- ® ( V o  ) 

Po (Vo) = p - -  

This permits one to consider Expres- 

vo ( 3 . t l )  

Vo = % ,  Xo = y ,  Yo = z (Vo ~ = u o  2 + r o d  ( 3 . 1 2 )  

Equatlng the cross derivatives of Expression (3.8), we may rewrite the 

system (3.8) - (3.9) in the form 
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Ouo OVo = O, OpoUo -4- ,~-:---OP°'° 0 (3.t3) 
oyo 0~o 0~o -- eyo = 

The system (3.13) describes plane Irrotatlonal "flows" of a compressible 

fluid wlth a "potential" ~ which Is of the form of an extremal characteris- 

tic of the surface E • To continue the analogy, the "velocity of sound" 

for this "flow" Is computed by means of Formula 

ao 2 = -- VoPo / Po' 

In conclusion, the author expresses gratitude to lu.D. Shmyglevkil for 

his help In this work. 
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